PowerTool.Automation

QuickStart Guide

Last Updated for 4.0.5.1

Contents
ADOUL thiS GUIE ..ottt ettt et e s bt e e be e e s bt e e s abeesabeeesaseesabeesabeeeneeesaree panesnneenns 1
T a oY [V 4T] o HU O T U US T USRUPRR 2
INSTAIATION L.ttt ettt ettt e sa b e e s bt e e bt e e sabeesabe e s beeesabeesabeeeabeeeabe eeebaeesabeesreean 2
INTEIrfAaCe DEFiNITION .eoueiiiieiiee ettt sttt et st e b e s sare e 2
U =1 T PP POPUPPPUPPPPPPRPPPRY 6
AN o] o o T- ol T AL 1 PR 6
F AN o] o o= Yol o 107 6 |V PR 7
1. Register the assembly and generate a TLB file.coivvuieeiicieiiieiie e 7
2. Register the assembly With the GAC. ... e e e e et 7
3. Import the TLB file and initialize the COM OBjJECLSccccvviieeiiiieiciee e 8
OVEIVIEW ..ttt ettt ettt et e e s es et e s s et e e s e b et e e sem et e e s sabe e e e s ambe e e e s amtneessanee samaeeesaraeeesanne 9
SaMPIE IMPIEMENTATIONS ..ceiii i e e e e e e e e e e e e e snbtereeeeeesssnsnbenneeeeesannnenns 11
(0 Y 0 ¥ o] L= USSR 11
(08 Y- 10 o] (=TT SPUUR 11
About this Guide

The PowerTool software has a built-in (OLE) Automation interface that allows the programmer or
engineer to programmatically control its operation.

What follows is a brief description of the PowerTool.Automation interface, what it is, how to install it,
and how to use it.

It is intended to give the reader an acquaintance in using the interface, and guide him or her in their
“first steps”. It is not intended as a comprehensive reference.

Introduction

One can start or stop multiple PowerTool applications, connect to various Power Monitor devices, set
trigger codes, start and stop sample runs, or save and load files via programmatic control, much like an
interactive user can do sitting at his or her console.

This document assumes that the reader has at least some familiarity with programming concepts in
general, and COM or the .NET Framework in particular.

Installation
First, install the PowerTool application via our standard installer. Typically, you will have already done
that if you have gotten to this point. The Automation sample implementations can be found in the

‘DeveloperExamples’ subdirectory where you installed the Monsoon Power Tool applications.
Executables and source code are both distributed for these examples. A Visual Studio solution file is
present, as are individual project files for each example. Be sure to read our usage notes before building
the samples. Your next steps will vary depending on whether you are accessing the library via .NET
aware languages like C# or via COM aware languages like C++.

Note, if you are building the solution as a whole, you will need to follow the steps for COM and .NET or
the C++ examples will not build. If you are only building specific C# sample projects, then you can skip
the COM specific steps.

Interface Definition
Subject to change. Current as of 4.0.5.0. Note, the interface changed in 4.0.5.0!

Guid(''B134840E-1BE3-4789-BO4E-DBAD3BEESE79™),
InterfaceType(CominterfaceType. InterfacelsDual),

ComVisible(true),
1
public interface IAutomation
{

#region lAutomation Properties

// Whether the PowerTool application is open
bool ApplicationlsOpen { get; }

// Whether a Power Monitor device is connected
bool DevicelsConnected { get; }

// Whether a sample is currently running
bool SamplelsRunning { get; }

// Serial number of the connected device
ushort DeviceSerialNumber { get; }

// Whether the application has any data captured or loaded from file
bool HasData { get; }

PowerTool.Automation QuickStart Guide 2

// Returns the summary statistics structure
SelectionData SelectionData { get; }

// Calibration status during sample run
// Values: OK, Warning, Failed
CalibrationStatus CalibrationStatus { get; }

// Program exit code
ExitCode ExitCode { get; }

// Data file name
string FileName { get; }

// Application status
PowerToolStatus PowerToolStatus { get; }

// Enable/disable throwing exceptions on errors
// (mostly during processing of properties)
bool ExceptionsAreEnabled { get; set; }

// Visibility state of the Power Tool application window
bool Visible { get; set; }

// Window state (min, max, normal)
WindowState WindowState { get; set; }

// Power-up time, in milliseconds.
// Allowable range: 0-255
byte PowerUpTime { get; set; }

// Current limits, in amps.

// Allowable range: 0-8

float PowerUpCurrentLimit { get; set; }
float RunTimeCurrentLimit { get; set; }

// USB passthrough mode.
// Allowable values: Auto, On, Off, Trigger, Sync
UsbPassthroughMode UsbPassthroughMode { get; set; }

// Directory for temporary files.
// The directory must exist
string TempDirectory { get; set; }

// Main and USB resistor offsets, in ohms.
// Allowable range: 0.0372-0.0627

float MainFineResistorOffset { get; set; }
float MainCoarseResistorOffset { get; set; }
float UsbFineResistorOffset { get; set; }
Ffloat UsbCoarseResistorOffset { get; set; }

// Aux resistor offsets, in ohms

// Allowable range: 0.0872-0.1127

float AuxFineResistorOffset { get; set; }
Ffloat AuxCoarseResistorOffset { get; set; }

// Trigger setting code.

PowerTool.Automation QuickStart Guide

// Same code as used on the PowerTool command line
string TriggerSetting { get; set; }

// Real-time voltage channel selection
// Allowable values: Main, Aux. (USB not valid)
Channel VoltageChannel { get; set; }

// Enable/disable capture of currents
bool CaptureMainCurrent { get; set; }
bool CaptureUsbCurrent { get; set; }
bool CaptureAuxCurrent { get; set; }

// Set Main output voltage, in volts.
// Allowable range: 2.0f < setting <= 4.095F
float MainOutputVoltageSetting { get; set; }

// Whether Main output voltage is enabled
bool EnableMainOutputVoltage { get; set; }

// Battery size, in mAh
// Allowable range: 1-9000
uint BatterySize { get; set; }

// Number of devices available
uint DeviceCount { get; }

// Incremental wait time, in milliseconds
// Default = 1000
uint Waitlnterval { get; set; }

// Version info

HardwareRevision HardwareRevision { get; }
byte FirmwareVersion { get; }

byte ProtocolVersion { get; }
SoftwareVersion SoftwareVersion { get; }

// Number of samples captured
ulong TotalSampleCount { get; }
ulong MissingSampleCount { get; }

// Capture date of sample
DateTime CaptureDate { get; }

// Sample rate (always 5000, but provided for completeness)
uint SampleRate { get; }

// Form position and size, in pixels
int Height { get; set; }

int Width { get; set; }

int Left { get; set; }

int Top { get; set; }

// Log fTile name. Empty or null string means no logging
string LogFileName { get; set; }

#endregion lAutomation Properties
#region lAutomation Methods

PowerTool.Automation QuickStart Guide

// Enumerate the Power Monitors which are available for connection.
// Outputs array of device serial numbers found, or null if none.
// Returns the number of devices found (zero if none).

uint EnumerateDevices(out ushort[] serialNumbers);

// Gets the serial number associated with a particular
// device instance. (See DeviceCount property).

// Argument must be in the range O..(DeviceCount-1)

// Returns O if invalid.

ushort GetSerialNumber(uint deviceNumber);

// Open/close the Power Tool application window, with optional wait.
// Wait times are specified in multiplea of the Waitlnterval

// property, listed above

bool OpenApplication(bool readlniFile, bool waitFlag);

bool OpenApplication(bool readlniFile, uint waitLimit);

bool CloseApplication(bool writelniFile, bool waitFlag);

bool CloseApplication(bool writelniFile, uint waitLimit);

// Connect/disconnect a Power Monitor device
bool ConnectDevice(ushort serialNumber);
bool DisconnectDevice();

// Refresh the application display
bool RefreshDisplay();

// Start/stop sampling

bool StartSampling(bool waitFlag;

bool StartSampling(uint waitLimit); // in multiples of Waitinterval
bool StopSampling(bool waitFlag);

bool StopSampling(uint waitLimit); // see above

// Load a previously-captured file
bool LoadFile(string fileName);

// Save captured data to a file

bool SaveFile(string FileName, // File name
bool overwriteFile, // Overwrite file?
bool createDirectory); // Create directory?

bool ExportCsV(ulong lowlndex, // 0._.(TotalSampleCount-1)
ulong highlndex, // 0. _.(TotalSampleCount-1)
string fileName, // File name
uint granularity, // 1,10,100,1000,10000 the

//modulus used to determine
//which samples to export
bool overwriteFile, // Overwrite file?
bool createDirectory); // Create directory?

// Sample retrieval

bool GetSample(ulong samplelndex, // 0._.(TotalSampleCount-1)
out Sample sample); // A Sample structure

bool GetSamples(ulong startindex, // 0..(TotalSampleCount-1)
uint sampleCount, // Number of samples desired

out Sample[] samples); // Array of Sample structures

PowerTool.Automation QuickStart Guide

//Resets the connection to the currently connected power monitor
//device and disables VOut.
bool ResetPowerMonitor();

#endregion lAutomation Methods

}

Usage

Approach 1: .NET

.Net 4.5 is specifically required for version 4.0.5.0.

As of 4.0.5.0, all included projects are built under Visual Studio 2015. If you wish to build under Visual
Studio 2012 and are only using C#, disable the CPPClient project. Otherwise, you must set your
PlatformToolset to VisualStudio 2012 for the CPPClient project or you will have build errors when you
build from the Solution as a whole.

.Net 4.0 is specifically required for version 4.0.4.11.
.NET 3.5 is specifically required for versions 4.0.4.0-4.0.4.10.

Assuming that you are writing your code in a .NET-compatible language, such as C#, you simply need to
fix the reference to PowerTool.exe in your project to point to wherever it was installed on your
computer.

The simplest way to do this is remove PowerTool .exe from your project references, and then re-add it.

Solution Explorer * 0
@ o--0daB £
Search Selution Explorer (Ctrl+:) 2

fa] Solution 'DeveloperTools' (4 projects) -
4 AutoDemo
b M Properties
4 | Beferences
5-8 PowerTool
u-B Systemn
u-B Systern.Data
u-B Systern.Deployment
5-B Systern.Drawing
u-B Systern.Windows.Forms
50 Systern.Zml
w1 app.config

PowerTool.Automation QuickStart Guide

No additional assembly registration or steps are necessary. If you did register an earlier assembly in the
GAC, .NET will pull that assembly first, and you must unregister it to compile against the new assembly.

Approach 2: COM

Alternatively, if you want to do it the old-fashioned way (COM-style) with a language such as C++, follow
the following steps. You will need to redo these steps anytime there is a new version of the PowerTool
executable or an interface change.

Note, COM support requires version 4.0.4.9 or later of the PowerTool application. Also note that the
COM APl is not as full featured as the .NET APl and does not expose all of the same functionality.

As of 4.0.5.0, all included projects are built under Visual Studio 2013. If you wish to build under Visual
Studio 2012, you must set your PlatformToolset to VisualStudio 2012 for the CPPClient project or you will
have build errors.

1. Register the assembly and generate a TLB file.
This step requires that you have installed the free .NET 3.5 (or higher) SDK from Microsoft.

Open a command prompt as an administrator and change to the .NET directory where regasm is
installed (for example: c:\Windows\Microsoft.NET\Framework\v4.0.30319). Run the following
command:

RegAsm.exe [path to powertool.exe] /tib:PowerTool.tlb
For example, with the default PowerTool install location, you would run

RegAsm.exe “C:\Program Files (x86)\Monsoon Solutions Inc\Power Monitor \PowerTool.exe”
/tlb:PowerTool.tlb

The above command, once completed successfully, registers the PowerTool.exe application as the
server for the PowerTool.Automation object and generates the tlb file you will need to import in your
code.

You should see an output along the lines of:
Types registered successfully

Assembly exported to 'c:\Program Files (x86)\Monsoon Solutions Inc\Power Monitor\PowerTool.tlb', and the type
library was registered successfully

2. Register the assembly with the GAC.
This step requires that you have installed either Visual Studio(2010 or later) or the free Windows
SDK(version 6 or later) from Microsoft.

Open a Visual Studio Command Prompt as administrator or a Windows SDK Command Prompt as
administrator. If you have previously registered a PowerTool assembly be sure to unregister first and
then register the new assembly.

PowerTool.Automation QuickStart Guide 7

If you need to uninstall the assembly from the GAC, you can issue the command:

gacutil /u PowerTool
Register your new assembly:

gacutil /i “C:\Program Files (x86)\Monsoon Solutions Inc\Power Monitor \PowerTool.exe”
You should see an output along the lines of:

Assembly successfully added to the cache.

You can query the GAC to see the PowerTool assembly is installed with the following command. Make
sure the PowerTool assembly version shown is the one you expect.

gacutil /I PowerTool

3. Import the TLB file and initialize the COM objects
The following sample calls are written in C++. To see a reference sample implementation, look at our

C++ samples.

Create a C++ project type of your choice, for example, a command line project.
Specify your includes and imports, including the tlb file
-This example uses the ATL COM libraries

ttinclude <atlbase.h>
#include <atlsafe.h>

-IMPORTANT! Fix this path to match your current location!
#import "C:\Program Files (x86)\Monsoon Solutions Inc\Power Monitor\PowerTool.tlb"
Specify the namespace
using namespace PowerTool;
Initialize the COM library
::Colnitialize(NULL);
Get the powertool instance
IAutomation *pAutomation = NULL;

CComPtr<lAutomation> autoPtr;
HRESULT hr = autoPtr.CoCreatelnstance(_T("PowerTool.Automation"));

Do whatever you want to do here with the interface.

PowerTool.Automation QuickStart Guide

Cleanup

if (pAutomation)
pAutomation->Release();
CoUninitialize();

Overview
The following sample calls are written in C#. To see a complete implementation, look at our _samples.

Start out with:
PowerTool.Automation myPowerTool = new PowerTool.Automation();

If you get a non-null result, you are now in programmatic control of the PowerTool. You can open more
than one PowerTool if you wish. Each is represented in your space by the object you instantiated, as
above.

So, now that you have a PowerTool instance, what can you do with it? You might start out by running it:
bool powerToolRunning = myPowerTool.OpenApplication(false, 30);

The “30” specifies the number of wait intervals we’re willing to wait for the app to start up. The default
interval is 1000 milliseconds, so in the above call, we said we’re willing to wait 30 intervals, or 30
seconds. The “false” tells it not to read its INI file, we’ll take the defaults.

Once the PowerTool app is running, it might be convenient to know what Power Monitor devices are
attached to the host computer:

ushort[] serialNumbers = new ushort[1]; // just temporary... gets replaced shortly
uint deviceCount = myPowerTool.EnumerateDevices(out serialNumbers);

If there are no Power Monitors, the EnumerateDevices call returns zero, and nulls out the output array.
Otherwise, it gives us a new array of serial numbers, and returns the count of devices.

If we see a device we like, we can connect to it by specifying its serial number. So, say
EnumerateDevices() reported back at least one device. We can then issue the following call to connect
to the first device:

bool deviceConnected = myPowerTool.ConnectDevice(serialNumbers[0]);

Now that we’re connected, the device is ours and will stay that way until we disconnect, or someone
pulls the plug.

How about we take some samples?

PowerTool.Automation QuickStart Guide 9

myPowerTool.Visible = true; // Let’s watch it run

myPowerTool.MainOutputVoltageSetting = 3.7; // Our device likes 3.7 volts
myPowerTool.EnableMainOutputVoltage = true; // Give it the juice

bool started = myPowerTool.StartSampling(10); // Same timing rules as above

/...

// ... We do other stuff while sampling occurs on a background thread, and then...

// ...

bool stopped = myPowerTool.StopSampling(10); // Stop sampling... same timing rules
myPowerTool.EnableMainOutputVoltage = false; // Leave the device powered off

Okay, now we have sample data sitting in PowerTool’s working memory. Exactly 5,000 data points for
each second that the sample was running. What do we do with this data? Well, we could saveitina

file...
bool dataSaved = myPowerTool.SaveFile (“C:\\MyFolder\\MyFile.pt4”, true, true);

The “true” values merely tell it to overwrite any like-named file it may find in that folder, and to create
the folder if it doesn’t already exist.

Now that our data is saved, let’s clean up...

myPowerTool.DisconnectDevice(); // Disconnect
myPowerTool.CloseApplication(false, true); // Don’t write INI file, wait for closure
myPowerTool = null; // Dispose of the interface

The above is intended as a simple reference and is not a complete guide. See the sample
implementations that are included for additional examples.

PowerTool.Automation QuickStart Guide

10

Sample Implementations
A Visual Studio Solution file is provided for your convenience. “DeveloperTools.sIn” contains the projects
referenced below.

C# Samples
IMPORTANT NOTE: To build any of these projects, change the project reference to PowerTool.exe to
reflect its installed location on your system.

Console Examples

Several simple examples are provided to demonstrate different capabilities.

“SimpleSamplingExample” shows how to connect to a device, sample, access realtime sampling data,
and export data to CSV and PT4 files.

“IterativeCallingExample” takes the functionality of SimpleSamplingExample, but runs it iteratively,
showing how to properly shutdown and startup your connections each time.

“ResetExample” shows how to use the new to 4.0.5.0 ResetPowerTool method to cycle the power to the
connected Power Monitor device.

“IniTriggerExample” shows how to use the Automation interface to work with trigger codes in ini files.
“PT4Reader” shows how to read in a pt4 file to extract the stored data.

“PT5Reader” shows how to read in a pt5 file to extract the stored data.

“RecalibrateExample” shows how to programmatically recalibrate the Power Monitor.

Windows Application Example

A sample application “AutoDemo” is included, both as an executable and with full source code. It
contains a full-featured Windows GUI app that demonstrates a more involved implementation of the
PowerTool .Automation interface.

When you run the executable, click OPEN to connect to an available PowerTool device. This will refresh
the list of devices available to connect via the AutoDemo application. Make sure your desired device is
selected, and then click CONNECT to activate control of the PowerTool instance via the AutoDemo
application.

C++ Samples
IMPORTANT NOTE: Be sure you have fully followed the directions listed for using COM, before using
these samples. Also, be sure to edit the path to your TLB file in your code.

Console Example

PowerTool.Automation QuickStart Guide 11

A simple application “CPPClient” is included, both as an executable and with full source code. It contains
a console application that uses the COM interface. It demonstrates connecting to the PowerTool

application and to a specific PowerMonitor device, taking a short sample, and writing the output to a
pt4 file.

PowerTool.Automation QuickStart Guide 12

